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Unsteady electrophoretic motion of a non-spherical 
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The oscillatory motion of an electrically charged non-spherical colloidal particle in an 
oscillating electric field is investigated. The particle is immersed in an incompressible 
viscous fluid and assumed to have a thin electric double layer. For moderate-aspect- 
ration spheroids and cylinders, a simple algebraic expression is derived that accurately 
describes oscillatory electrophoretic particle motion in terms of the steady Stokes 
resistance, added mass, and Basset force. The effects of double-layer conduction and 
displacement currents within dielectric particles are included. The results indicate that 
electroacoustic measurements may be able to determine the 6- potential, dielectric 
constant, surface conductivity (and microstructural information contained therein), 
size, density, volume fraction, and possibly shape of non-spherical particles in a dilute 
suspension. A simple formula is obtained for the high-frequency electrical conductivity 
of a dilute suspension of colloidal spheroids with arbitrary charge and dielectric 
constant; only the added mass and Basset force are required and the requisite 
parameters are given. The result is needed for electroacoustic measurements but it may 
also be independently useful for determining the dielectric constant, surface 
conductivity, volume fraction, and possibly the shape of non-spherical particles in a 
dilute suspension. Electroacoustic energy dissipation is described for a dilute colloidal 
suspension. It is shown that resistive electrical heating and viscous dissipation occur 
independently. Electrical and viscous dissipation coefficients that characterize the 
order volume fraction contributions of the suspended particles are calculated; the 
electrical dissipation coefficient is O( 1) for all oscillation frequencies, whereas the latter 
vanishes at low- and high-frequencies. The fluid motion is shown to be a superposition 
of unsteady, viscous and potential flows past an oscillating particle with no applied 
electric field. The electro-osmotic flow field is insensitive to particle geometry and 
qualitatively different from the flow past an oscillating particle with no applied field. 

1. Introduction 
Colloidal particles generally bear a non-zero electric potential (y- potential) on their 

surface, and in a suspending electrolyte, a diffuse electric double layer forms. There is 
no net electrical charge on the particle and the surrounding double layer; nevertheless, 
colloidal particles will generally migrate, force-free, through a suspending fluid under 
the influence of an electric field (Hunter 1987; Russel, Saville & Schowalter 1989). In 
most applications, the fluid motion is quasi-steady. Recently, electroacoustic devices 
have been developed for efficiently characterizing colloidal suspensions (O’Brien 1988, 
1990; Marlowe, Fairhurst & Pendse 1988); these devices rely on an understanding of 
unsteady, electrophoretic motion. 
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When a sound wave travels through a colloidal suspension, a measurable electric 
field, oscillating at the same frequency as the sound wave, can be generated. This effect 
arises from the relative motion between the particles and the diffuse portion of their 
electric double layers resulting from the density difference of the particles and the 
suspending fluid. This effect was first postulated by Debye (1933) in the context of ion 
motion in electrolytic solutions. Since that time, there have been several investigations 
of the phenomenon in colloidal suspensions (Hermans 1938; Enderby 1951; Booth & 
Enderby 1952). The converse effect, an oscillating electric field produced a sound wave 
of the same frequency, has been observed but not explained until recently (O'Brien 
1988). 

For moderate sound wave amplitudes and electric field strengths, the average, 
microscopic particle velocity in a suspension is linearly related to the average velocity 
and electric field, 

where MO and ME are the (dimensionless) unsteady, hydrodynamic and electrophoretic 
particle mobility tensors. As indicated, ME is normalized by the Smoluchowski (1903) 
formula, ec/p that describes quasi-steady electrophoresis of a moderately charged 
particle with a thin electric double layer, where ,u and E are the dynamic viscosity and 
dielectric constant of the suspending fluid. Brownian motion and sedimentation are 
neglected in (1.1) because we are interested in unsteady, oscillatory motion that occurs 
on a timescale of - 1 ps, which is short compared to the timescale of diffusive or 
gravity-driven motion of micron-size particles. 

Under quite general conditions, the average current density in a colloidal suspension 
is (O'Brien 1990) 

(1.2) 
J" = K*.Em+~-(ApP/p)ME.VP*, €6 

P 

where K* is the unsteady, electrical conductivity tensor of the suspension; c and 
Ap, = pp-p are the volume fraction and excess density of the suspended particles. 
Both K* and ME depend on microscopic properties of the suspended particles; 
however, K* may often be conveniently determined by independent measurements 
(VP" = 0) (Russel et al. 1989) so that it may be considered a known parameter in (1.2). 
Thus, macroscopically measurable pressure, voltage, and current are linked to 
microscopic suspension parameters via ME. This is the basis of electroacoustic devices 
that have recently been developed for rapid reliable characterization of colloidal 
suspensions. Unfortunately, the unsteady, electrophoretic mobility is known only for 
suspensions of spherical particles (O'Brien 1988 ; Mangelsdorf & White 1992; Sawatzky 
& Babchin 1993; Rider & O'Brien 1993). The only exception is for dilute suspensions 
of spheroidal particles with thin electrical double layers and moderate surface charge 
(Loewenberg & O'Brien 1992). The aim of this paper is to investigate the unsteady 
electrophoretic motion of a non-spherical, colloidal particle with special attention to 
the effects of particle shape, charge, and dielectric constant. 

The problem is formulated and assumptions are stated in $2. The unsteady electro- 
osmotic flow past a charged colloidal particle in an oscillating electric field is derived 
and illustrated in $3. Detailed aspects of unsteady viscous flows are significant because 
of their impact on microscale heat and mass transport during electroacoustic 
measurements. An 'electro-osmotic resistance' is determined that relates the electric 
field strength to the force acting on a charged stationary particle; the results are used 
to determine electrophoretic particle motion. In @4 and 5,  earlier results for the 
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electrophoretic mobility of moderately charged spheroids with thin electric double 
layers (Loewenberg & OBrien 1992) are extended to include highly charged and 
cylindrical particles. According to (1.2), electroacoustic measurements also require 
knowledge of the suspension conductivity; fortuitously, a simple formula for the high- 
frequency electrical conductivity by a dilute suspension of colloidal spheroids with 
arbitrary charge and dielectric constant is obtained as a bi-product of the analysis. 
Energy dissipation adversely affects the performance of electroacoustic devices; in $ 6, 
electroacoustic energy dissipation is described for a dilute suspension of non-spherical 
particles. Concluding remarks are made in $7. Throughout the article, the effects of 
particle shape, charge, and dielectric constant are highlighted. According to relation 
(1.2) the results of this work will strengthen the link between macroscopically 
measurable pressure, voltage, and current and microscopic suspension parameters. 
Furthermore, this work should advance the present understanding of microscopic 
unsteady viscous flows. 

2. Problem formulation and assumptions 
2.1. Electric field 

The applied oscillating electric field is described by Em cos o t .  In this paper, c < 1 is 
assumed; accordingly, E(x, t )  -+ Em cos wt far from the particle. Henceforth, the 
electric field is normalized by Em. For electroacoustic applications, high oscillation 
frequencies, greater than 1 KHz but less than lo3 MHz, are of particular interest. 
Herein, lo3 4 w 4 10' rad s-' is assumed; for o in this range, electrophoretic motion 
is unsteady, and high-frequency electrical dispersion occurs. The wavelength of 
electromagnetic radiation is very large compared to the particle size so that Maxwell's 
equations reduce to the quasi-steady (electrostatic) form (Jackson 1962) : 

V.E(x) = 0, VXE(X) = 0, (2.1) 

where E(x, t )  = E(x)e-'" has been assumed; by the linearity of (2.1H2.3), general 
time-dependent behaviour can be constructed from the Fourier components of E(x, t). 

The electric double-layer thickness, given by the Debye length, K-', is small 
compared to the particle size in many applications. For example, K a  - 103az(10m)'~2, 
in an m molar, z-valent, symmetric electrolyte at room temperature, where a is the 
particle size in microns; thus, K a  9 1 except for very weak electrolytes or particles 
much smaller than micron-size. Herein, KU + 1 is assumed, where a is the minimum 
particle dimension. For thin electric double layers and frequencies in the assumed 
range, the boundary condition for the electric field on the particle surface is (Dukhin 
& Derjaguin 1974; O'Brien 1983, 1986) 

(1 + A i ) E * n - h i ( ~ ~ / e ) B * n  = -kKSVs*E,  (2.2) 
where is the intraparticle field, n is the outward normal on the particle surface, V, 
is the surface gradient operator, A, = ( ~ o / K ~ ) l / ~  e-in/4 is a complex-valued electrical 
frequency parameter, R" = KS/aKm is the dimensionless surface conductivity of the 
particle, discussed below, and ep  is the dielectric constant of the particle. Apparently, 
the particle behaves as a conductor if A; c p / e  + 0 or gs =k 0. The tangential portion of 
the electric field, E,, is continuous across the particle surface : 

E, = B,, (2.3) 
which completes the specification of the electric field. 

The suspending fluid (electrolyte) has the complex-valued isotropic conductivity 
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K = K" -iwe that incorporates the contribution, K", from the migration of charged 
species and the displacement current associated with the dielectric constant of the fluid 
(Russel et al. 1989). Thus, (A,I2 is the ratio of the dielectric relaxation time for the fluid 
to the period of electric field oscillation; typically, K"/E - 1 MHz. According to 
boundary condition - (2.2), the electric field is independent of A, for non-conducting 
particles ( e p / e  = K S  = 0). The particle conductivity is -iwe,; only displacement 
currents pass through its interior. The dielectric constant of water is very large, about 
80 times the permittivity of a vacuum, thus e p / e  is usually small; however, important 
exceptions exist: for example e p / c  x 1 for TiO, and some hydrocarbons (Russel et al. 
1989; Harnwell 1949, p. 88). Typically, zeC/kT = 0(1), where kT/e = 25.4 mV (e is the 
charge on an electron, k is the Boltzmann constant, and T is absolute temperature). A 
highly charged particle, ze</kT % I ,  is endowed with an additional surface conductivity 
(Dukhin & Derjaguin 1974; O'Brien 1983, 1986): R" z exp(Izea/2kT)/~a; for 
example, d" x 1 for 5 = 150 mV, K a  = 50. Physically, surface conductivity arises from 
the high density of mobile counterions in the thin diffuse portion of the electric double 
layer; the charge density in this layer depends exponentially on the surface charge. 

2.2. Fluid velocity 
A complex-valued viscous frequency parameter, A = a(o/v)'/, e-in/4 = a(K"/ev)'/' A,, 
characterizes the fluid motion where v is the kinematic viscosity of the suspending fluid, 
and A, is the electrical frequency parameter defined above; lA12 is the ratio of the 
viscous relaxation time to the period of the electric field. Assuming K " / s  - 1 MHz 
(Russel et al. 1989), IAl - alA,l in water, where a is the particle size in microns, and 
lAl = IA,l = 1 for a 1 pm particle (in water) with w = lo6 rad s-l. 

In general, the Navier-Stokes equations govern the fluid motion. Boundary 
condition (2.5) suggests that the characteristic electro-osmotic fluid velocity is 
U,  = E"e</,u for fluid motion driven by an applied electric field, which is the 
Smoluchowski formula for quasi-steady electrophoresis of a moderately charged 
particle with a thin electric double layer; the characteristic displacement of the 
oscillating fluid is U,/w.  In most situations of interest, the fluid displacement is very 
small compared to particle size, UJwa < 1. Typically, eC/,u - cm2 V-l s-' and 
E" - 10 V cm-I yielding, U ,  = lop3 cm s-l, and U,/wa - for a micron-size 
particle at the typical frequency for electroacoustic measurements, w - lo6 rad s-l. 

According to the above estimates, the Reynolds number based on particle size is 
small : Re = U ,  a/v = ( U,/wa)(AI2 6 1. The fluid may be considered locally in- 
compressible if the wavelength of sound is large compared to the particle size at the 
oscillation frequency, w (Batchelor 1967). This is generally true at the frequencies of 
interest; for example, the wavelength of sound in water is 1 cm at the typical frequency 
w - 10' rad s-'. Thus, the unsteady Stokes equations govern the fluid velocity and 
pressure (Kim & Karrila 1991): 

V~u(x) -Vp(x )  = A2u(x), V.u(x )  = 0, (2.4) 

where u(x, t )  = u(x) e-i"t has been assumed ; general time-dependent behaviour can be 
constructed from the Fourier components of u(x,t) because of the linearity of 
(2.1H2.5) (Basset 1888; Lawrence & Weinbaum 1988). The unsteady Stokes equations 
have been non-dimensionalized using a characteristic velocity and pressure, 17, and 
yU,/a, where U, depends on the relevant boundary conditions as discussed below. By 
the assumed diluteness and incompressibility of the suspension, u(x, t) tends to the 
uniform oscillating field, U" cos wt, far from the particle. 

For thin electric double layers, the fluid velocity satisfies the electro-osmotic 'slip' 
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boundary condition on the particle surface (Dukhn & Derjaguin 1974; O'Brien 1983, 
1986): 

which couples the fluid velocity to the electric field. The mobile, or diffuse, portion of 
the double layer contains a net charge equal and opposite to that on the particle 
surface ; the electro-osmotic slip velocity arises from the convection of this electrically 
charged fluid layer by the electrical body force. The charge density, and thus the body 
force, vanish outside the thin double layer. Boundary condition (2.5) is derived using 
a quasi-steady description of the flow field within the electric double layer; thus, the 
double layer is assumed to be much thinner than the viscous boundary layer, 
KaB (h (+l .  

3. Unsteady electro-osmotic flow; non-conducting particles 
3.1. Unsteady electro-osmotic jlow field 

For Urn = E" = 0, equations (2.4) and (2.5) describe the unsteady, velocity field, uo(x), 
past a particle oscillating with the prescribed velocity, UPcoswt, in a quiescent fluid 
without an applied electric field. In this case, U ,  = U p  so that (2.5) reduces to the no- 
slip boundary condition uo(x) = e on the particle surface, where e is a unit vector 
parallel to Up. For Up = E" = 0, (2.4) and (2.5) describe the unsteady velocity field 
past a stationary particle in an oscillating ambient fluid, Urn coswt; the (dimensional) 
velocity field in this case is simply U"[e-uO(x)]. For Um = Up = 0, (2.4) and (2.5) 
describe the unsteady electro-osmotic flow field, uE(x), past a stationary electrically 
charged particle in an oscillating electric field, E" cos wt. By taking U ,  = E"OeC/p, (2.5) 
reduces to uE(x)  = -Et ;  the electro-osmotic velocity field is electrically driven by the 
slip velocity on the particle surface. The total velocity field in a dilute suspension is 
given by a superposition of the velocity fields discussed above: 

(3.1) 
4 u(x)-  U" = ( U P -  Urn)u"x)+-E"uE(x). 
Y 

Kinematical features of unsteady viscous flows are important for understanding 
convective heat and mass transport processes between particles and the suspending 
fluid that may occur during electroacoustic measurements (Ghaddar et al. 1986; Sobey 
1985). The unsteady viscous flow field uo(x) has been the subject of several studies (e.g. 
Pozrikidis 1989a; Loewenberg 1994a, b). For the remainder of this section, we focus 
on the unsteady electro-osmotic velocity field, uE(x), which has not been previously 
investigated . 

For non-conducting particles ( + / E  = ks = 0) the normalized electric field is quasi- 
steady and can be expressed as 

E(x)  = e - up(x) ,  (3.2) 
where e is parallel to the applied field, and up(x)  is the linearized potential flow field 
that satisfies (2.1), vanishes at infinity, and up-n = e - n ,  on the particle surface; u'(x) 
is the high-frequency potential-flow limit of uo(x) that is valid for points outside of the 
1Al-l boundary layer on the particle surface (Batchelor 1967). Thus, (3.2) satisfies (2.1), 
tends to e at infinity, and satisfies E(x) .n  = 0 on the particle surface, as required. The 
unsteady electro-osmotic velocity field past a stationary non-conducting particle in an 
oscillating electric field is given by 

uE(x) = e - uo(x) - E(x), (3.3) 
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FIGURE 1. Instantaneous streamlines for unsteady electro-osmotic flow past a non-conducting sphere 
with 1A1 = 1.  Streamfunction values follow the sequence: q5 = 0.3, 0.1, 0.03, 0.01, ..., 0, ..., -0.01, 
-0.03, -0.1, -0.3; streamlines are labelled accordingly where space permits. (a) wt = 0, (b) O S O X ,  
(c)  0.55~,  (d )  0 .85~ ,  (e) 0 . 8 8 ~ ,  v> 0.90~. 

where e is parallel to Em, and uo(x) is the unsteady viscous flow field defined above 
(3.1). The expression vanishes at infinity and satisfies the unsteady Stokes equations 
because solutions of (2.1) also satisfy (2.4). On the surface of a non-conducting particle, 
Et = E;  thus, (3.3) satisfies boundary condition (2.5) for electro-osmotic flow 
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FIGURE 2. Instantaneous streamlines for unsteady electro-osmotic flow past a nonconducting unit- 
aspect-ratio cylinder with !/\\ = 1. Streamfunction values as for figure 1. (a) w t  = 0, (b) OSOx, (c)  
O ~ X ,  (d)  0.85n, (e) 0.865~, cf) 0 . 9 0 ~ .  

(U" = Up = 0). Substituting (3.2) into (3.3) yields the simple superposition solution 
for the unsteady electro-osmotic velocity field past any non-conducting particle : 

U q X )  = U'(X) - UO(X). (3.4) 
The sequence of instantaneous streamline patterns in figures 1 and 2 depict unsteady 

electro-osmotic flow past a stationary non-conducting particle in an oscillating field 
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FIGURE 3. Instantaneous size of recirculating eddy, depicted by the location of the forward stagnation 
point (cf. figures 1 and 2), for unsteady electro-osmotic flow past a non-conducting sphere (thinner 
curves) and unit-aspect-ratio cylinder (thicker curves). 

with IAI = 1. For a sphere (figure l), the results were obtained analytically by inserting 
Stokes's (1851) solution into (3.4). For other particle shapes, results can be obtained 
by superposition of numerical solutions according to (3.4); the axisymmetric flow past 
a unit-aspect-ratio cylinder (diameter = height), depicted in figure 2, was obtained 
using the calculations of Loewenberg (1994~). Recalling the eciWt time dependence and 
quasi-steady description of the electric field, we conclude that the electrically driven slip 
velocity on the particle surface is maximal when wt = nx (n = 0,1,2,. . .) and vanishes 
when wt  = ( n + i ) x .  The unsteady flow field decelerates in a delayed response to the 
decreasing field strength (nn < wt < [ n + + ] x ) ;  the flow pattern corresponding to 
wt = ( n + i )  n (figures 1 b, 2b)  results from the fluid inertia, and manifests flow field 
unsteadiness . 

Surface flow reversal initiates unsteady flow field reversal. For uo(x), surface flow 
reversal occurs when the tangential stress distribution changes sign on the particle 
surface during decelerating portions of the particle oscillation cycle (Pozrikidis 1989a; 
Loewenberg 1994a, b). An attached recirculating eddy is formed that expands until it 
encloses the entire particle, continues to expand into the flow field as the particle 
decelerates further, and it expands to infinity as (n +;) x -wt  + 0, terminating the flow 
reversal process. Details of the surface flow reversal and subsequent near-field flow 
reversal process are sensitive to the detailed particle geometry (Pozrikidis 1989 a;  
Loewenberg 1994 a, b). 

By contrast, surface flow reversal for unsteady electro-osmotic flow occurs precisely 
as the applied electric field changes sign. A recirculating eddy, enclosing the entire 
particle, is instantaneously formed that expands as the applied field strength increases, 
as illustrated in figures 1 (c, d) and 2(c, d); forward and rear stagnation points are 
apparent. An analysis of the far-field velocity indicates that electro-osmotic flow 
reversal terminates as an exponentially decaying sequence of concentric counter- 

1 
lr/2 
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rotating eddies annihilate each other during the interval (n +:) n < or < (n + 1 )  n, as 
illustrated in figures 1 ( e , f )  and 2 ( e , f ) ;  electro-osmotic flow reversal terminates earlier 
at higher frequencies, later for lower. The evolution of the recirculating eddy is 
depicted in figure 3 for several oscillation frequencies ; the over-shooting oscillatory 
behaviour illustrates the predicted occurrence of adjacent reversed-flow regions just 
prior to the termination of flow field reversal. The results depicted in figures 1-3 
indicate that unsteady electro-osmotic flow reversal is insensitive to detailed particle 
geometry, perhaps because electro-osmotic surface flow reversal is the same for all non- 
conducting particles. Pathlines for all small-amplitude oscillatory flows are elliptical 
closed orbits (Pozrikidis 1992; Loewenberg 1994a). 

3.2. Unsteady electro-osmotic force 
A microscopic particle executing small-amplitude oscillations in a viscous fluid 
experiences an opposing force: F = -,uaRo- Up, where Ro is the symmetric unsteady 
viscous resistance tensor. Recalling that U, = E"sLJ,u characterizes the electro- 
osmotic flow field, the unsteady electro-osmotic force that acts on a stationary 
electrically charged non-conducting particle in an oscillating electric field is obtained 
from the superposition (3.4): FE = s&zRE.Em, where 

RE = Ro-A2MA (3.5) 

defines the symmetric electro-osmotic resistance tensor and MA is the added-mass 
tensor associated with the potential flow field, uP(x). 

For spheroids (Lawrence & Weinbaum 1988; Pozrikidis 1989b) and finite-length 
cylinders (Loewenberg 1993a), with aspect ratios 1/10 < q5 < 10 (q5 = length/width), 

Ro w RS+hBm+h2MA+- -(RS.RS)-B" , 
h+l " 6x  1 

and by (3.5), it follows that 

RE w RS+hSm+-[-(RS.RS)-B"], A 1  
h + l  6x  (3.7) 

where h is defined by the smallest overall particle dimension perpendicular to its 
orientation, RS is the steady Stokes resistance tensor, and 

B" = ee ISP u'(x) - u'(x) dS 

is the Basset force tensor, obtained from the potential flow solution by considering 
viscous dissipation in the boundary layer (Batchelor 1967), where u' = up-e  is the 
potential-flow slip velocity on the particle surface. Exact formulae and numerical 
results for RS, B", and MA are available for spheroids and finite-length cylinders (e.g. 
Loewenberg 1993a, b). The results (3.6) and (3.7) have the same absolute error and 
w 5 % maximum relative error, attained at lhl - 1.  

Rigorous asymptotic results 

(3.8a) 

R0 = h2MA +hB" + 0(1), IA1 9 1,  (3.8b) 

are recovered from (3.6) in the appropriate limits. Apparently, RE = Ro for Ihl 4 1 

h 
6x 

RO = RS+-RS.RS+O(h2), p1-g 1 ;  

6 FLM 218 
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whereas, RE = AB" + O( l), for lAl % 1. The distinct high-frequency behaviour is 
because of the dominant added-mass contribution to Ro that arises from the 
acceleration of displaced fluid around an oscillating particle; this contribution is absent 
for a stationary particle with an electrically driven surface velocity. At high frequencies, 
the electro-osmotic resistance is dominated by viscous dissipation within the 1AI-l 
boundary layer. 

4. Unsteady electrophoretic motion; non-conducting particles 
Under the assumptions set out in the introduction, the particle motion is force-free 

and determined by equating the time derivative of particle inertia to the total 
hydrodynamic resistance resulting from the combined velocity field, (3.1) : 

(4.1) 
4 h2(pp/p)  v, up = h2 vp U" - (UP- U") R0 +--Em ' RE, 
P 

where Vp is the (dimensionless) particle volume, and h2 Vp U" is the buoyancy force 
associated with an oscillating ambient velocity field; Ro and RE are the resistance 
tensors defined in 53. Electrically induced rotary particle motion is discussed at the end 
of this section. The combined velocity field can be obtained by inserting (3.4), (3.9,  and 
(4.1) into (3.1): 

(4.2) 

where R: denotes a principal value of RO; for spheroids and bite-length cylinders, 
which are explicitly considered, a = (1 or I, corresponding respectively to parallel or 
perpendicular orientation of the particle symmetry axis. By (3.8), the net velocity field 
for the unsteady force-free motion is irrotational in the quasi-steady low- and high- 
frequency limits, but not for Ihl = O(1). 

Incorporating (1.1) and ( 3 3 ,  (4.1) is inverted to yield the principal values of the 
unsteady hydrodynamic and electrophoretic particle mobilities in a dilute suspension : 

R: + A2 V, R! - A2M,A 
M," = R: + A2(pp/p) Vp ' M," = R: + A2(pp/p) V, (4.3 a, b) 

For (A( + 0, M," = 1. For IA( > 0, IM,"l < 1,IM:l > 1, or M: = 1 depending on whether 
pp/p > 1, pp/p < 1 ,  or pp/p = 1. Inserting (3.8b) into (4.3), indicates that 
M," = (M,A + Vp)/(M,A + ( p p / p )  V,) in the high-frequency limit. Smoluchowski's result, 
M," = 1, is recovered in the low-frequency limit, but 

M," = e w [ M , A  + ( P P / P )  VPl) 

in the high-frequency limit, indicating that M," - A-' for lAl % 1 regardless of the 
particle density. For moderate-aspect-ratio spheroids and cylinders, (3.6) may be 
inserted into (4.3) to yield simple algebraic expressions for the unsteady hydrodynamic 
and electrophoretic mobilities valid for all oscillation frequencies. In this article, we 
focus on ME because of the link it provides between macroscopic electroacoustic 
measurements and suspension microstructure via O'Brien's (1990) reciprocal relation 
(1.2); the connection between Mo and acoustic dissipation is discussed in 56. 

The unsteady electrophoretic mobilities of non-conducting randomly oriented 
spheroidal and cylindrical particles are depicted in figure 4, where ( M E )  = 
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FIGURE 4. Magnitude @)_and phase angle (b) for the electrophoretic mobilities of randomly oriented 
non-conducting (eP/c  = KS = 0) spheroids (thinner curves) and cylinders (thicker curves); the aspect 
ratios (9 = length/width) are: 9 = 1 (solid curves), 9 = 10 (dashed curves), and q5 = 1/10 (dashed- 
dotted curves). The density ratio is pp/p = 2. The frequency parameter, A, is based on the minimum 
overall particle dimension (half-width of rods and half-thickness of disks). 

% M f  + 2M3.  The results for a sphere are analytically described by O'Brien's (1988) 
formula; results for spheroids were obtained by Loewenberg & O'Brien (1992). 
The results for a finite-length cylinder are new. The limiting low- and high-frequency 
behaviours, discussed above, are apparent for Ih) < 0.1 and lhl > 10. The results 
indicate that equal-aspect-ratio spheroids and finite-length cylinders behave almost 
identically ; electroacoustic measurements will be insensitive to detailed geometrical 
features. It is also apparent that rod-shaped particles behave similarly to spheres. 
However, the results illustrated in figure 4 indicate that electroacoustic measurements 
may be able to distinguish disk-shaped particles. The effect of particle density is 
depicted in figure 5. Apparently, electrophoretic mobilities are sensitive to particle 
density ; this parameter may therefore be accessible by electroacoustic measurements. 
The results shown in figure 5 indicate that the electrophoretic mobility of heavy 
particles decreases more rapidly with increasing frequency and can exhibit a phase 
angle maximum at lAl = O( 1). Phase-angle overshoot occurs for globular particles 

6.2 
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FIGURE 5. Magnitude (a) and phase angle (b) for the electrophoretic mobilities of randomly oriented 
non-conducting cylinders with density ratios : pp/p = 1 (thinnest curves), pp/p = 2 (medium thickness 
curves), pp/p = 10 (thickest curves). fi = 1 (solid curves), 10 (dashed curves), 1/10 (dashed-dotted 
curves). h is defined as in figure 4. 

(4 x 1) and rods with pp/p = 10, but not for disks of the same density; for a sphere, 
it can be shown that phase-angle overshoot occurs if pp/p  > 4. 

In the absence of an applied electric field, the particles are randomly oriented 
because of Brownian motion. However, in electroacoustic applications, the assumption 
that the particles are randomly oriented also requires that Brownian motion dominate 
the electrical alignment of the particles. Non-conducting particles have an induced 
dipole moment = ea3Vp E m .  Brownian motion will dominate electrical anisotropy if 
ea3VpEm2/kT< 1. For a 1 pm particle in water at room temperature, in a typical 
electric field strength of 10 V cm-', ea3Vp Em2/kT  - 0.2 and thus electrically induced 
anisotropy may be significant. The electric field will exert a torque of approximately 
ed V, Em2 on a non-conducting particle, resulting in rotation with angular velocity of 
approximately eVp Emz/,u; thus, electrical anisotropy will also be unimportant if 
e7Em2/,u G 1, where 7 is the length of time during which the electric field is applied 
across the suspension. In water, with a field strength of 10 V cm-', electrically induced 
anisotropy is established on the timescale (eEm2/,u)-' - 1 s, in contrast with 7 - s 
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for the existing pulsed-field electroacoustic devices. We conclude that in these 
instruments, the initially isotropic particle orientation distribution persists during the 
timescale of interest. Conducting particles have smaller induced dipole moments so 
random orientations are more likely. Thus, only results for orientationally isotropic 
suspensions are illustrated herein. 

5. Conducting spheroidal particles 
5.1. Unsteady electrophoretic motion of conducting spheroids 

In a uniform applied electric field, Em, the intraparticle field in a homogeneous 
ellipsoid is uniform and given by (Stratton 1941 ; Landau, Lifshitz & Pitaevskii 1984) 

where K P  is the (volumetric) particle conductivity, K =  K"-iwt. is the fluid 
conductivity, and mA = MA/VP is the added-mass tensor normalized by the particle 
volume. Then, by (2.3), we can express the tangential field on the surface of a 
conducting ellipsoid as 

Et = G,E"E,; G,=[l+(KP/K)m~]-', 

where E, is the dimensionless (tangential) field on the surface of a non-conducting 
ellipsoid. From (2.5) and the linearity of the electro-osmotic problem, we obtain the 
following remarkably simple generalization of the non-conducting results obtained in 
@3 and 4 for a conducting ellipsoid: 

(5.3 a-c ) 

where uf(x), Rf, and Mf denote results for a non-conducting ellipsoid, given by (3.4), 
(3.5) and (4.3b); the combined velocity field is obtained from (4.2) by multiplying the 
Em~C/,u term by G,. 

For moderately charged (ks = 0) dielectric ellipsoids, K P  = -iweP, thus (5.2) 
becomes 

u"(x) = G, u ~ ( x ) ,  RE = G * Rt,  ME = G * Mf, 

1 +A; 
I + [ (ep /e)  m," + 11 A;' 

G, = (5.4) 

indicating that G, = 1 at low frequencies for all values of eP/e  and thus the 
Smoluchowski mobility is recovered; G, exhibits dispersive behaviour for lAEl = 0(1), 
and G, = [(cP/t .)  m t  + 11-l for JA,( >> 1. Thus, high-frequency mobilities are reduced, 
but low-frequency mobilities are unaffected by large particle dielectric constants. From 
( 5 . 3 ~ ) ~  (5.4), and the values for mj;l and mf listed in table 1, we conclude that the 
axial electrophoretic mobility of disk-shaped particles should be very sensitive to the 
particle dielectric constant. For 4 Q 1, m;;l = 2/q$ (Loewenberg 1993b); thus, jt4; is 
significantly reduced for e p / e  2 O(4). For 4 2 1, the transverse electrophoretic 
mobility is moderately sensitive to B, , /E (mf = 1 for q5 >> 1). The transverse mobility of 
oblate spheroids and the axial mobility of prolate spheroids are insensitive to the 
particle dielectric constant. 

Formula (5.4) was obtained by Loewenberg & O'Brien (1992) but results were 
illustrated only for e p / e  = 0. The electrophoretic mobilities of moderately charged 
(RS = 0) randomly oriented spheroids with large dielectric constants are depicted in 
figure 6. The results confirm that disk-shaped particles are most sensitive to the particle 
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I4 
FIGURE 6. Magnitude ku) and phase angle (b) for the electrophoretic mobilities of randomly oriented 
moderately charged (KS = 0) spheroids; Ep/c = 0 (thinnest curves), EJE = 1/10 (medium thickness 
curves), and ep /e  = 1 (thickest curves). q5 = 1 (solid curves), 10 (dashed curves), 1/10 (dashed-dotted 
curves). h is defined as in figure 4; u(Km/ev)1/2 = 1, thus A, = h and pJp = 2. 

q 5 =  1/10 q 5 =  1/5 q 5 =  1/2 q 5 =  1 q5=2 q5=5 + = l o  

6.18 3.01 1.12 0.500 0.210 0.0592 0.0207 
16.9 3.72 1 .oo 0.464 0.137 0.0484 

0.0747 0.142 0.310 0.500 0.704 0.893 0.962 
0.217 0.5 15 1 .oo 1.03 1.11 1.15 

ml; 

ml; 
D,,mf 46.6 

D,mf 0.113 
TABLE 1. Numerical values for the dimensionless hydrodynamic parameters that determine the 
conductivity factor, G, and dipole moment, S, of spheroidal particles according to (5.3), (5.9), and 
(5.12). mA is the added mass, normalized by the particle volume; D is defined by (5.7), and is 
normalized by the minimum overall particle dimension (cross-sectional radius of prolate particles and 
half-thickness of oblate particles). q5 is the aspect ratio 
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dielectric constant; electroacoustic measurements may be able to determine the 
dielectric constant of disk-shaped particles. According to (5.4) and the values in table 
1, a sphere should be most sensitive to very large values of e P / e  because the mobility 
of non-spherical particles in the direction of least hydrodynamic resistance is 
insensitive to the particle dielectric constant; however, this prediction is not manifest 
in figure 6 for the largest particle dielectric constant considered ( + / E  = 1) and, 
therefore, it may not occur in practice. 

For R" =k 0, an equivalent volumetric particle conductivity tensor is defined by 
equating the low-frequency (lABI 4 1) electrical dissipation rate for an ellipsoid with 
only surface conduction to that of an ellipsoid with only volumetric conduction. We 
shall assume that the electric field for an ellipsoid with surface conductivity, K S ,  is 
approximately the same as that for an ellipsoid with a volumetric conductivity, KP; 
thus, electrical dissipation outside the two particles is the same. Electrical dissipation 
resulting from surface conduction is equated to that caused by conduction within an 
ellipsoid volume. Accordingly, we write 

(5.5) 
K S  Is, 

By (5.1), (5.5) can be rewritten as 

E,. E, dS = aK:( 1 + mt)2  V,. 

By inserting (3.2) into the expression for B" given beneath (3.7), we find 

thus, (5.7) 

If +/e =I= 0, then Kp = ( K S / a )  D-imp/, where I is the isotropic second-order tensor. 
The above result depends critically on the assumption preceding (5.5) regarding the 

electric field for an ellipsoid with surface conductivity. Fortunately, Dukhin & Shilov 
(1 980) performed exact numerical calculations for the low-freguency electrical 
conductivity of a dilute suspension of highly charged spheroids ( K s  =k 0) and their 
results support this conjecture. For moderate-aspect-ratio spheroids (1/ 10 < q5 < lo), 
Dukhin & Shilov observed that their exact calculations were accurately approximated 
( x  5%) by a simple analytical form, derived by satisfying (2.2) in an integral sense 
only. The validity of this approximation was confirmed by O'Brien & Ward (1988) who 
applied Dukhin & Shilov's numerical method to calculate the quasi-steady electro- 
phoretic mobility of a highly charged spheroid. O'Brien & Rowlands (1993) 
empirically confirmed the Dukhin-Shilov approximation in the context of determining 
the high-frequency electrical conductivity of a dilute suspension of highly charged 
oblate spheroids; this finding is particularly important because it supports application 
of the Dukhin-Shilov approximation to the high-frequency conditions of interest 
herein. Dukhin & Shilov (1980) showed that an equivalent volumetric particle 
conductivity tensor, KP, can be rigorously identified with their approximation; 
formulae for the principal values Kf were given, which are equivalent to (5.7). The 
intuitive derivation of this result, contained herein, provides a physical basis for the 
mathematical equivalence, and it suggests the possibility of generalizing the 
Dukhin-Shilov approximation to ellipsoids. 
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Substituting (5.7) into (5.2) yields 

for highly charged spheroids with small dielectric constants ( + / E  = 0, k" 4= 0). In this 
case, G, = [1+ K,SD,rn,A]-l for lAEl < 1, and G,+ 1 at high frequencies; G, exhibits 
dispersion for IhEl = O(1). Surface conductivity reduces low- but not high-frequency 
particle mobilities. The Smoluchowski result, M E  = 1, is not recovered for lAl+ 0 
because it does not describe the quasi-steady electrophoretic migration of highly 
charged particles (Dukhin & Derjaguin 1974; O'Brien 1983; OBrien & Ward 1988). 
Equations (5 .3~)  and (5.8) generalize O'Brien's (1988) formula to highly charged 
spheroidal particles. The values for D,, rnf and D,mf listed in table 1 indicate that the 
axial, but not the transverse, electrophoretic mobility of disk-shaped particles should 
be extremely sensitive to the surface conductivity of the particle. The converse is 
true for q5 >/ 1 : only the transverse electrophoretic mobility is modestly sensitive to 
k" (D,,rnf = 1). The transverse mobility of oblate spheroids and the axial mobility 
of prolate spheroids depend weakly on I?". 

In figure 7, the electrophoretic mobilities of highly charged randomly oriented 
spheroids with small dielectric constants ( + / E  = 0) are depicted. The results confirm 
that disk-shaped particles are extremely sensitive to surface conductivity. From (5.8) 
and the values in table 1, we deduce that M /  for an oblate spheroid (q5 = 1/10) is 
reduced by 32 % at low frequencies by a very slight surface conductivity, kS = 1/100, 
whilst MF is essentially unaffected; the resulting approximately 11 % reduction in the 
quasi-steady electrophoretic mobility of randomly oriented oblate spheroids is evident 
in figure 7. Low-frequency electroacoustic measurements may be able to yield the 
surface conductivity of disk-shaped particles, providing access to further micro- 
structural details of the suspension. Figure 7 indicates that spherical and prolate 
particles are an order of magnitude less sensitive to small but non-zero surface 
conductivity. However, the results indicate that a spherical particle is most sensitive to 
large surface conductivities because the electrophoretic mobilities of non-spherical 
particles in the direction of least hydrodynamic resistance are only weakly affected by 
surface conductivity, as the values in table 1 indicate. 

For the general case E ~ / E  =+ 0, R" += 0, the electro-osmotic fluid velocity, resistance, 
and electrophoretic mobility of conducting spheroids are modified (relative to the 
quantities for non-conducting particles) according to (5.3), where 

1 +A; G, = 
l + ~ S D , r n , A + ( ~ p / e + l ) h ~  (5.9) 

with requisite parameter values given in table 1. Contrasting figures 4 and 5 with 
figures 6 and 7, reveals a complex dispersive behaviour in an intermediate frequency 
range that is attributable to particle conductivity. This behaviour is very weakly 
modulated by the value of a ( K m / w ) 1 / 2 .  The results depicted in figures 6 and 7 
correspond to U ( K ~ / W ) ~ "  = 1 (A, = A ) ;  qualitatively similar results were observed for 
U ( K ~ / E V ) ~ / ~  = 0.1 and 10. 

5.2. High-frequency electrical conductivity 
According to the reciprocal relation (1.2) electroacoustic measurements require high- 
frequency electrophoretic mobilities and suspension conductivities. For dilute 
suspensions of spheroids, the conductivity is given by the formula (5.12), which is 
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FIGURE 7. Magnitude (a) and phase angle (b) for the electrophoretic mobilities of randomly oriented 
highly charged spheroids with small dielectric constants ( E P I C  = 0); KS = 0 (thinnest curves), 
KS = 1/10 (medium thickness curves), and KS = 1 (thickest curves). q5 = 1 (solid curves),lO (dashed 
curves), 1/10 (dashed-dotted curves); an additional dotted curve depicts the mobility for KS = 1/100, 
q5 = 1/10, A is defined as in figure 4; u(Kw/w)l la  = 1, thus A, = h and p p / p  = 2. 

derived below by generalizing the low-frequency (loa 4 w 4 lo6 rad s-') results of 
Dukhin & Shilov (1980) and the results of Fricke (1953) for dielectric particles. 

The suspension conductivity that appears in (1.2) is defined by (Russel et al. 1989) 

- = l + c S ;  K* s=- rp- - I )-JvpEdV, 
K v-i K 

(5.10) 

where S is the electric dipole moment of the particle. Displacement currents are 
negligible under low-frequency conditions, thus the particle conductivity is described 
by (5.7) and the fluid conductivity is given by K = K". Then, with the help of ( 5 4 ,  the 
dipole moment is evaluated and the result of Dukhin & Shilov (1980) is recovered: 

(PO, - 1) (1 + mt) s, = 
l + k S D , m ~  * 

(5.11) 
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FIGURE 8._Real (a) and imaginary (b) parts of the dipole moment for randomly oriented moderately 
charged (KS = 0) spheroids; ep/e = 0 (thinnest curves), ep/e  = 1/10 (medium thickness curves), and 
ep/e = 1 (thickest curves). q5 = 1 (solid curves), 10 (dashed curves), 1/10 (dashed-dotted curves); an 
additional, dotted curve depicts the dipole moment for C,/E = 1/100, q5 = 1/10. 

The result is easily generalized to high frequency by including displacement currents 
in the particle and suspending fluid; thus, Kp = ( K S / a )  D -imp/, and K = K" -ios. 
The result is 

(5.12) 

which is valid for lo3 6 w 4 lo9 rad s-l; (5.1 1) is recovered in the low-frequency limit, 
and S, = (ep /e  - 1) (1 + m,A) (1 + m," ep/e)-l  for lhEl % 1. For 2" = 0, the result reduces 
to the well-established Maxwell-Wagner theory for spheroids (Russel et al. 1989; 
Fricke 1953) : 

[ ( B p / E  - 1) A; - 11 (1 + m,") 
1 +(1 +m," ep/E)A; ' s, = (5.13) 

which has the same high-frequency limit as (5.12). Thus, (5.11) and (5.13) are special 
cases of (5.12). Recently, the observation that these regimes are linked according to 
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FIGURE 9. Real (a) and imaginary (b) parts of the dipole mopent for randomly oriented highly 
charged spheroids with small di$ectric constants (eP/c  = 0); KS = 0 (thinnest curves), KS = 1/10 
(medium thickness curves), and KS = 1 (thickest curves). q3 = 1 (solid curves), 10 (dashed curves), and 
1/10 (dashed-dotted curves); an additional, dotted curve depicts the dipole moment for dS = 1/100, 
q3 = 1/10. 

(5.12) was independently made by O'Brien & Rowlands (1993) who experimentally 
confirmed the result for disk-shaped particles. Equations (5.10) and (5.12) generalize 
the O'Brien-Rowlands formula to include rod-shaped particles and they establish a 
useful connection between well-known inviscid flow parameters and the electrical 
conductivity of a dilute suspension of spheroids with arbitrary charge and dielectric 
constant; the required parameter values are supplied in table 1. 

Similarly to the results for electrophoretic particle mobilities, (5.12) and the 
parameter values listed in table 1 indicate that the dipole moment of an oblate spheroid 
aligned with the applied field is very sensitive to dielectric constant and surface 
conductivity; S,  for an oblate spheroid and S,, for a prolate spheroid are insensitive to 
+ / E  or K'. The dipole strength of moderately charged (RS = 0), spheroids are 
depicted in figure 8; highly charged spheroids with small dielectric constants ( + / B  = 0) 
are shown in figure 9. The depicted results thus correspond, respectively, to the 
Maxwell-Wagner theory (5.13), and the low-frequency Dukhin-Shilov result (5.11). 
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The dipole strength of highly charged spheroids with large dielectric constants is 
illustrated in figure 10. Dispersive behaviour is evident in all figures for lA,l = O(1); the 
results depicted in figure 10 indicate that the dispersive effects of particle dielectric 
constant and surface conductivity tend to cancel each other. By the arguments given 
at the end of 54, orientational isotropy is assumed: (S) = gSll +2S,).  

As predicted, the results depicted in figures 8-10 reveal that disk-shaped particles are 
most sensitive to particle conductivity. For = 1 / 100, figure 8 shows that the dipole 
moment of an oblate spheroid is affected comparably to that of a sphere or prolate 
spheroid with an order to magnitude larger particle dielectric constant; for k" = 1/ 100, 
figure 9 indicates that the dipole moment of an oblate spheroid is more affected than 
that of a sphere or prolate spheroid with a ten-fold greater surface conductivity. Figure 
8 reveals two distinct characteristic relaxation frequencies for disk-shaped dielectric 
particles; the behaviour is most apparent for e P / e  = 1 but it can also be discerned for 
e p / e  = 1/10. From the parameter values in table 1, we deduce that the lower relaxation 
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frequency corresponds to S,,, and the higher frequency relaxation to S,. The results 
depicted in figure 10 indicate that the double-dispersive behaviour of moderately 
charged disk-shaped particles with large dielectric constants is largely suppressed for 
d" = 1/10. The results shown in figures 8-10 indicate that rod-shaped particles behave 
remarkably like spheres. In addition to their electroacoustic application, high- 
frequency conductivity measurements may be able to independently determine the 
aspect ratio, dielectric constant, and surface conductivity of disk-shaped particles ; 
particle shape cannot be inferred from conductivity measurements if q5 2 1. 

6. Electroacoustic energy dissipation in a dilute suspension 
The performance of electroacoustic devices is degraded by energy dissipation. In 

this section, we analyse the energy dissipation in a dilute suspension subjected 
simultaneously to sound waves and electric fields, the situation that arises during 
electroacoustic measurements. 

For a dilute suspension, the macroscopic electroacoustic equations are (O'Brien 
1990) 

-iwp U w + c - U P  =-WP", p0.U" =ioxP", 0 - J "  = O ,  (6.1~-c) 

where an e-'& time dependence has been assumed, which is valid because of the 
linearity of the electroacoustic equations and consistent with the development herein. 
The particle velocity and current density are described by (1.1) and (1.2). The term 
p[ U" + c(App/p)  Uq in the force balance (6.1 a) is the momentum per unit volume of 
suspension; only pressure forces are retained in the force balance because they 
dominate the viscous and interparticle forces if the wavelength of sound is large 
compared to the particle size at the frequency w (O'Brien 1990). In the neighbourhood 
of a given particle, the suspension is locally incompressible, as explained in $2.2; 
macroscopically, however, the suspension is compressible as (6.1 b) indicates, and x is 
the bulk compressibility. Conservation of charge results in (6.1 c). Together these five 
equations (1. l), (1.2) and (6.1) determine the average particle velocity, current density, 
macroscopic fluid velocity and pressure, and macroscopic electric field subject to the 
appropriate macroscopic boundary conditions that arise from conservation of mass, 
momentum, and charge density. 

The macroscopic energy flux in a suspension is e = P" U" + YwJ", where !P is the 
electric potential, E" = - V Y". The (time-averaged) volumetric electroacoustic 
dissipation rate is 

[ P  A p p  1 

B = R e ( t l = e ) R e { V ~ " . U " + ~ " V . U " - ~ . J " + ~ V . J " } ,  (6.2) 

where the overbar denotes a time average over the oscillation period, 2n/w, and the 
tilde denotes a complex-conjugate quantity; l m  is the average stored energy. 
With the help of (l.l), (1.2), (4.3a), (5.10), (5.12), and (6.1), we obtain 

1 1 0  
- 6  = --Im{~}JPw(2+~K"JE")2+c +O(c2), (6.3) 

2 P  

where B and y are the dimensionless viscous and electrical dissipation coefficients for 
the suspended particles, given by (6.4) below. An interesting feature of the result is the 
independence of electrical and viscous contributions despite their interaction via (1.2) ; 
they can be independently derived by considering a suspension subjected solely to 
electric fields or sound waves. 
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FIGURE 1 1 .  Viscous dissipation coefficient for randomly oriented spheroids with density ratios: 
p,/p = 1 . 1  (thinnest curves), pp/p = 2 (medium thickness curves), p,/p = 10 (thickest curves). q5 = 1 
(solid curves), 10 (dashed curves), 1/10 (dashed-dotted curves). A is defined as in figure 4. 

The O(c) term in (6.3) results exclusively from the suspended particles. The viscous 
and electrical dissipation coefficients are given by 

(6.4~)  

y, = $[Re + lAE12 Im {S,>l 
=-  1 (XSD,-  l > ( R ~ ~ , m t +  1 ) + [ ( e p / ~ ) ) 2 m , A - 2 ( ~ p / ~ ) m ~  +k'"~,(m," + 1)- ~ I I A , I ~  

2 (1 + R"D, m y  + [ 1 + (€J€ )  

x (1 +&), (6.4b) 

where ( B )  = f( PI, + 28,), and ( y )  = &y,, + 2y,) for orientationally isotropic suspen- 
sions as assumed herein by the arguments given at the end of $4. 

The non-negative term involving Im{ x} in (6.3) arises from the expansion viscosity 
of the fluid (Lighthill 1978) and also from thermal dissipation associated with the 
differential adiabatic heating and cooling of the particles relative to the surrounding 
fluid as a result of pressure fluctuations; generally, thermal dissipation occurs if the 
oscillation period is comparable to the thermal relaxation time of the particle (Temkin 
1981). Other sources for Im{ x} > 0 are discussed by O'Brien (1990). The O(c) term in 
(6.3) involving B describes viscous dissipation associated with relative fluid-particle 
motion. Viscous dissipation usually dominates thermal dissipation except for particles 
of near neutral buoyancy (Allegra & Hawley 1971); furthermore, viscous dissipation 
often dominates the entire Im { x} term except at exceedingly high frequencies, or if the 
suspension is extremely dilute or contains microscopic bubbles (Lighthill 1978). 
Viscous dissipation results in exponential acoustic energy loss, 4nc( p> per wavelength, 
and causes the amplitude of a plane sound wave to decay exponentially at half this rate. 
According to (6.4u), the viscous dissipation coefficient is non-negative and vanishes 
only if App = 0. Except for pp/p 4 1, ( p )  attains a maximal value, O(Ap;/ppp) at 
IAl - ( p / ~ ~ ) l / ~  (Loewenberg 1994b). The results depicted in figure 11 illustrate these 
features and reveal that disc-shaped particles are somewhat distinct but rods behave as 
spheres; more extensive results are given by Loewenberg (1994b). 
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FIGURE 12. Electrical dissipation _coefficient for randomly oriented highly c_harged spheroids with 
large dielectric congants; ep/e = KS = 1/10 (thinnest curves), ep/e =-l/lO, KS = 1 (second thinnest 
curves), ep /e  = 1, KS = 1/10 (second thickest curves), and e p / e  = KS = 1 (thickest curves). # = 1 
(solid curves), 10 (dashed curves), 1/10 (dashed-dotted curves). 

The iK"IE"12 term in (6.3) results from resistive electrical heating of the fluid; the 
subdominant contribution involving y arises from the O(c) modification of the 
suspension conductivity associated with the particles. The fraction of electrical energy 
converted to heat during each oscillation period is 47cJA,J-2 ( i+c(y)) .  According to 
(6.4b) and the results shown in figure 12, y depends monotonically on frequency, has 
finite low- and high-frequency limits, and has an undetermined sign. Figures 11 and 12 
indicate that the electrical and viscous dissipation coefficients exhibit a similar 
sensitivity to particle shape. As expected, i. < 0 always. 

It is interesting to consider the electrical dissipation induced by sound waves in a 
suspension, and conversely, the viscous dissipation caused by electrophoretic particle 
motion. In the first case, we obtain an estimate of the electric field from (1.2) with 
J" = 0; in the second case, we estimate the pressure gradient from (6.1 a)  with U" = 0. 
In either case, with the help of (4.3) and (6.4), we find that the ratio of the induced 
energy dissipation to the primary dissipation, associated with the applied field, is 
approximately 1 0 - 3 ~ ( < / ~ a ) 2  under quite general conditions relevant to electroacoustic 
measurements in aqueous suspensions, where the <-potential is in mV. Recalling that 
K a  S= 1 and < O(100 mV), we conclude that the interaction of electrical and acoustic 
energy is negligible, even in concentrated suspensions. Together, this result and (6.3) 
indicate that electroacoustic energy dissipation can be accurately estimated by 
considering each applied field acting independently. 

7. Concluding remarks 
The unsteady electrophoretic motion of a non-spherical colloidal particle has been 

investigated. A microphysical understanding of the electroacoustic measurement 
process will be advanced by the new qualitative features of the electro-osmotic flow 
field and particle resistance that are presented in this article. Under practical relevant 
conditions, it is assumed and justified that the fluid is locally incompressible, the 
Reynolds number (based on particle size) is small, and the electric double layer is thin 
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compared to the particle size. New results were obtained for the electrophoretic 
mobilities of highly charged and cylindrical particles, the high-frequency conductivity 
of highly charged spheroids, and the rate of electroacoustic energy dissipation in a 
dilute suspension. Each of these quantities should directly further practical applications 
of electroacoustic measurements. 

It was shown that the electro-osmotic flow field past a stationary non-conducting 
electrically charged particle is a superposition of unsteady Stokes flow and potential 
flow past an oscillating particle with no applied field. The results indicate that the 
unsteady electro-osmotic flow field is insensitive to particle geometry. The unsteady 
electro-osmotic resistance tensor for a non-conducting particle equals its unsteady 
Stokes resistance minus its added mass. For moderate-aspect-ratio spheroids and 
cylinders, a simple formula accurately approximates the electro-osmotic resistance at 
all oscillation frequencies in terms of the steady Stokes resistance and Basset force 
tensors. 

An expression for the unsteady electrophoretic mobility of non-conducting particles 
was obtained by a force balance. The result depends explicitly on particle density, and 
depends implicitly on particle shape through the dimensionless unsteady Stokes 
resistance, added mass, and volume; particle size enters explicitly through the viscous 
frequency parameter. For a fixed oscillation frequency, the results reveal a strong 
dependence on size, a moderate dependence on particle density, and a weaker shape 
dependence. Rod-shaped particles behave much like spheres but disk-shaped particles 
are distinct ; the unsteady electrophoretic motion of equal-aspect-ratio spheroidal and 
cylindrical particles is very similar. According to a reciprocal relation, electroacoustic 
measurements are proportional to the volume fraction, 5- potential, and electrophoretic 
mobility of the suspended particles. We conclude that while quasi-steady electro- 
phoresis and electroacoustic measurements can both determine the 5- potential of 
a particle, electroacoustic measurements may also be able to determine particle size, 
density, and volume fraction, and possibly distinguish disk-shaped particles, but not 
rods, from spheres ; however, electroacoustic measurements are insensitive to detailed 
geometric features of the particle surface. 

Exploiting a special property of ellipsoids, the results for non-conducting particles 
were generalized to incorporate the effect of displacement currents or double-layer 
conduction in dielectric or highly charged moderate-aspect-ratio spheroids. The results 
for conducting particles are related to the results for non-conducting particles by a 
complex-valued multiplicative factor that depends explicitly on the particle dielectric 
constant and surface conductivity ; only the added-mass and Basset-force tensors are 
needed, and the requisite parameters are supplied. Since these parameters are needed 
for non-conducting particles, results for conducting spheroids are obtained without 
further calculation. Results indicate that the unsteady electrophoretic motion of oblate 
spheroids is very sensitive to its dielectric constant and surface conductivity; the 
mobilities of prolate spheroids and spheres are much less sensitive to particle 
conductivity, and their behaviour is similar. We conclude that electroacoustic 
measurements may yield additional microstructural information in suspensions of 
disk-shaped particles that are highly charged or have large dielectric constants. 

A formula was obtained for the high-frequency electrical conductivity of a dilute 
suspension of spheroids with arbitrary charge and dielectric constant; only the added- 
mass and Basset-force tensors are needed and the principal values are supplied. The 
formula depends explicitly on the particle dielectric constant, surface conductivity, and 
volume fraction ; particle shape enters implicitly. According to the reciprocal relation, 
the high-frequency conductivity and electrophoretic mobility are both required for 
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electroacoustic measurements. High-frequency conductivity measurements may be 
independently useful for determining particle volume fraction, dielectric constant, 
surface conductivity (and microstructural information contained therein, e.g. the 
5- potential), and possibly shape; the results are most promising for oblate particles. 

Electroacoustic energy dissipation was described for a dilute suspension. Although 
the pressure and electric fields interact via the reciprocal relation, energy dissipation 
results from the independent contributions of each applied field. Viscous dissipation 
and electrical heating coefficients characterize the O(c) contributions of the suspended 
particles ; typical results were illustrated. 

The author is grateful for several valuable conversations with Dr R. W. O’Brien. 
This work was supported by a grant from the Australian Research Council and a 
NATO fellowship from the National Science Foundation. 
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